Transcendence II

In the last post Carl Brannen (who has derived the number of particle generations in his latest blog post) said he had once played with the value $\zeta (3)$ and found that it could not be a simple rational multiple of $\pi^3$. In his classic paper [1] on MZVs, Hoffman mentions a number of conjectures based on a consideration of the zeta function as a map into the reals from a subalgebra of the noncommutative polynomial ring $\mathbb{Q}[x,y]$ on two letters (with both ordinary product and a shuffle type product), namely the subalgebra of polynomials of the form $\mathbb{Q}.1 + xTy$ for any $T$.

The conjecture states that the quotient of this algebra by the kernel of $\zeta$ is a simple polynomial algebra on some set of Lyndon words. If true, it would imply in particular that $\zeta (3)$ cannot be a rational multiple of $\pi^3$. Hoffman shows that $\zeta (x^{m} y^{n})$ can always be written as a simple combination of Riemann zeta values $\zeta (i)$ for $i \geq 2$. The theorem amounts to showing that, for real numbers $s$ and $t$ lying in the basic simplex (bounded by the line $s + t = 1$)

$\sum_{m,n} s^m t^n \zeta (x^{m} y^{n}) = 1 – \frac{\Gamma (1 – s) \Gamma (1 – t)}{\Gamma (1 – s – t)}$

where M theorists will recognise the Euler beta function that appears in the Veneziano amplitude.

[1] M. E. Hoffman, J. Alg. 194 (1997) 477-495

4 Responses so far »

  1. 1

    Doug said,

    Hi Kea,

    Are any of these Michael E Hoffman Arxiv papers the same or an update of the 1997 paper?

    Nine papers listed from 2000-present [two not dated].
    Showing results 1 through 9 (of 9 total) for au:Hoffman_M

    http://arxiv.org/find/math/1/
    au:+Hoffman_M/0/1/0/all/0/1

  2. 2

    Kea said,

    Hi Doug. Those are more recent papers, but thanks for the link.

  3. 3

    L. Riofrio said,

    Great work by Carl (and Kea too). The Euler-Beta connecdtion is a happy discovery. I will be referring to Carl’s post too.

  4. 4

    CarlBrannen said,

    Kea, I wouldn’t call it a “derivation”. At best that sort of thing would be a “postdiction”.

    I think that to appreciate what I’m doing with snuarks and masses and all that you really have to wait for another dozen posts or so. At best, all I’m doing now is assembling the tools and making vague arguments.


Comment RSS · TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: