Regular Irregular

In the book The Eightfold Way (nothing to do with Gell-Mann) there is an article by Thurston on the beauty of the Klein quartic curve, which the book is about.

The Klein quartic is tiled regularly by irregular heptagons. Topologically it is a three holed (genus 3) oriented surface, and hence it has a hyperbolic geometry. It has interesting symmetries. Tiling the Poincare disc with the heptagons we see a central heptagon with seven surrounding ones. By following the tiling outwards we generate the sequence 7,7,14,21,35,56,91,147,238, … which is precisely seven times the Fibonacci sequence! If the three holed surface is squished about it can be made to look like a tetrahedron with tubes for edges. Have fun playing.

1 Response so far »

  1. 1

    L. Riofrio said,

    Cool! It looks like a conformal representation of the hyperbolic plane, or one of the mc escher drawings Penrose uses in his book.


Comment RSS · TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: