Hey Kea:

Sorry, I am a private tutor for math and science. I tutor from five years all the way up to whatever age! Quite rewarding and in concert with my other interests. I thought of you so hard tonight when a kid had the problem of solving for x:

Cos^2(x)=cos(x)

hehehehe I said: “**Mydear, this is an idempotent relation because it is of the form something squared equals something.”** I showed her how to solve the problem using that reasoning and she said: “What about the other root?” And I said: “Isn’t zero squared the same as zero?” A”h yes” she replied. Then she said: “OH it is 90 degrees AND zero degrees for our answer.”

Kea, you haven’t even met this girl yet your thoughts have served to teach her very important concepts in mathematical reasoning.

Thank you.

]]>Good to see you here. I’m not a Game Theory person myself, but it’s probably fair to say that Physics is ignoring a lot of good ideas from that quarter – but then physics is ignoring a lot of good ideas from a lot of quarters – this situation, however, will change in the near future due to certain awkward (for some) undeniable observational facts, such as the large number of black holes which now appear to exist.

]]>I have not read your reference F William Lawvere and Robert Rosebrugh ‘Sets for Mathematics’.

I have been reading a classic from the Society of Industrial and Applied Mathematics [SIAM]: Tamer Basar and Geert Jan Olsder. ‘Dynamic Noncooperative Game Theory’, revised 1999 from 1982. The authors refer to this as a type of representation theory.

Since this is mathematics, the language is similar, but not identical to representation theory used in physics.

Some differences include using C* for cost-to-come and G* for cost-to-go,

Similarities include index sets, infinite topological structured sets, mappings and functionals in discrete time.

There is substitution for some of these items in continuous time such as time intervals, Borel sets, trajectory, action and informational topological spaces.

Tme appears to be treated as a duality.

There may or not be stochastic influences.

The Isaacs condition for the Hamiltonian is used.

Types of such games include:

for discrete time –

OL – open loop

CLPS – closed loop perfect state information

CLIS – CL imperfect state

FB – feedback perfect

FIS – feedback imperfect

1DCLPS – one-step delayed CLPS

1DOS – one-step delayed obsevation sharing

for continuous time –

OL

CLPS

eta-DCLPS – eta-delayed DCLPS

MPS – memoryless perfect state

FB

If players are allowed to be entities capable of exchanging enegy quanta or longevity then this might considered enegy economics?

The stochastic game may be consitent with the probablistic nature of QM.

Is phyisics failing to use a valuable tool of representation theory from applied mathematics?

]]>Hey Kea:

Thanks for the kind thoughts. I have been thinking of all of you, but I am swamped in my personal affairs. I have been hammering out ideas for a coupla papers, in addition to trying to get my business of the ground. I began three weeks ago with zero clients. Now I have sixteen!!! Money can enslave a person, but ultimately physics always wins. Take Care:)

Interestingly enough, the Riemann zeta function pops up in the calculation of the critical dimension of bosonic string theory (D=26). In attempting to define (and order) the Virasoro operator L_0 (the light-cone Hamiltonian) there arises a sum of positive integers that appears to diverge. This leads one to define L_0 without this sum, hoping later this sum will converge using some cool math trick, to later add (a multiple of) it as an “ordering constant” c to L_0.

It turns out this sum is equivalent to zeta(-1), where zeta(s) is Reimann’s zeta function, analytically continued. Explicitly the sum can be written as zeta(-1)=-1/12=1+2+3+4+…, giving our ordering constant the form: c=1/2(D-2)zeta(-1)=-1/24(D-2) where D is the dimension of spacetime.

Later, when requiring a vanishing commutator for the Lorentz charge, one requires that 1-1/24(D-2)=0 and 1/24(D-2)+a=0. These restrictions yield D=26 and c=-1. The c=-1 happens to give the precise shift in the mass squared operator (M^2=-p^2) for the open string spectrum to include massless photon states.

Who’d have guessed analytic number theory would have anything to do with spacetime dimension and light? Cool stuff!

]]>